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Abstract

Diabetic foot ulcers (DFUs) are considered a serious complication of diabetes with complex pathogenic factors. Normal tissue repair proceeds 
through well-coordinated overlapping phases including hemostasis, inflammation, proliferation, and remodeling. In diabetes, the progression 
through these phases is impaired resulting in a sustained inflammatory state and delayed wound healing. Epigenetic mechanisms of gene regu-
lation, such as DNA methylation and non-coding RNAs, are associated with the synchronized regulation of the wound healing process involving 
multiple cell types. The epigenetic regulation is sensitive to chronic hyperglycemia and is known to cause pathogenesis of microvascular com-
plications, such as DFU. Several studies suggest that altered epigenetic regulation in skin cells from wounds influence cell phenotypes and the 
healing progression, particularly in pathologic states such as diabetes. In this review, we discuss the epigenetic mechanisms of DNA methylation 
and regulation of non-coding RNAs in tissue repair and highlight recent findings that demonstrate how epigenetic events are altered through 
the progression of diabetic wound healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic 
mechanisms will strengthen our understanding of how to improve the healing outcomes in patients affected by DFUs.
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Resumo

As úlceras do pé diabético (UPD) são consideradas uma complicação grave da diabetes com fatores patogénicos complexos. A normal reparação 
do tecido ocorre através de fases sobrepostas bem coordenadas, incluindo a hemóstase, inflamação, proliferação e remodelação. Em condições de 
diabetes, a progressão das fases da cura da ferida é disfuncional, resultando num estado de inflamação crónico e na cicatrização demorada de feri-
das. Mecanismos epigenéticos de regulação génica, como a metilação do ADN e ARNs não codificantes, estão associados à regulação sincronizada 
do processo de cicatrização de feridas envolvendo múltiplos tipos de células. A regulação epigenética é influenciada pela hiperglicemia crónica e é 
conhecida causar patogénese das complicações microvasculares, como as UPDs. Vários estudos sugerem que a alteração da regulação epigenética 
das células da pele em feridas influencia os fenótipos celulares e a progressão da cicatrização, particularmente em estados patológicos como a 
diabetes. Nesta revisão, discutimos os mecanismos epigenéticos de metilação do ADN e regulação de ARNs não codificantes na cicatrização do 
tecido. Destacamos as descobertas recentes que demonstram como os eventos epigenéticos estão alterados na progressão da cicatrização de 
feridas diabéticas. Dissecar a interação dinâmica entre os subtipos celulares envolvidos na cicatrização de feridas e nos mecanismos epigenéticos 
reforçará a nossa compreensão de como melhorar os resultados de cicatrização em doentes com UPDs.
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> MECHANISMS OF DNA METHYLATION IN 
DIABETIC WOUND HEALING

DNA methylation, in mammals, is catalyzed by enzymes 
of the DNA methyltransferase (DNMT) family that trans-
fer a methyl group to the C5 position of cytosine in CpG 
dinucleotides (cytosine 5′ to a guanine, separated by a 
phosphodiester bond). (10) DNA methyltransferase-1 
(DNMT1), DNMT3A, and DNMT3B are the main methyl-
transferase enzymes involved in DNA methylation. Also, 
the ten-eleven translocation (TET) family is responsible 
for DNA demethylation. (11)

DNA methylation and demethylation are known to re-
gulate diabetic wound healing, in several aspects of 
wound repair such as inflammation, proliferation and 
migration, angiogenesis and collagen deposition. (12-15) 
Thus, we focus here on the roles of DNA methylation in 
diabetic wound healing (Table 1).

> DNA METHYLATION IN INFLAMMATION

Chronic inflammation in diabetic wounds is a key contri-
butor to poor wound healing. In the early inflammatory 
phase, macrophages are predominantly in the pro-in-
flammatory M1-like phenotype, and then polarized to 
the regenerative M2-like phenotype in the transition 
from late inflammatory phase to proliferative phase. (16) 

However, under diabetic conditions, the macrophage 
phenotype polarization is severely compromised, lea-
ding to impaired wound healing. (17, 18)

In type 2 diabetic db/db-/- mice, bone marrow-derived 
stem cells have shown increased levels of DNMT1 and a 
pro-inflammatory M1-like macrophage phenotype. (12, 19) 
Moreover, wound macrophages of diet-induced obese 
and db/db-/- mice showed an inhibition of DNMTs 3a 
and 3b. (20) This effect led to a hypomethylation and ove-
rexpression of ciclo-oxigenase-2 (Cox-2) promoting an 
increase in prostaglandin E2 (PGE2) synthesis. The in-
crease in the activation of Cox-2/PGE2 pathway caused 
an increase in macrophage inflammatory cytokine ex-
pression and impaired phagocytosis of bacteria. (20)

The toll-like receptor 2 (TLR2) promoter was found me-
thylated at CpG sites in wounds of patients with DFU. (21) 
The upregulation of DNMT1 expression and consequent 
hypermethylation of the neurogenic locus notch homo-
log protein 1 (Notch1), transcription factor PU.1, and 
Krüppel-like factor 4 (Klf4), were shown to cause poor 
wound healing in diabetic db/db-/- mice through the dys-
regulation of hematopoietic stem cells (HSCs) towards 
macrophage differentiation. (19) This inflammatory me-
chanism has shown that diabetes induced epigenetic al-

> INTRODUCTION

Diabetic foot ulcers (DFU) are a serious complication of 
diabetes, with a prevalence of 15–25 % among patients 
with diabetes, (1) and cause higher economic burden and 
mortality. (2) Approximately 50–60% of patients with 
DFUs will develop diabetic foot infection (DFI) and 15% 
will undergo amputation. Furthermore, the 5-year risk 
of death in patients with DFUs is 2.5 times higher than in 
patients without foot ulcers. (3) Taken this into account, it 
is key to focus on the study of DFU mechanisms to deve-
lop better treatments and improve patient well-being.
Cutaneous wound healing is a complex and highly coor-
dinated process involving numerous cell types to ac-
complish four overlapping phases of hemostasis, in-
flammation, proliferation, and tissue remodeling. (4) In 
the hemostasis phase, immediately after injury, platelets 
activate to produce fibrin clots, and immune cells are re-
cruited to the wound areas. In the inflammatory phase, 
neutrophils are initially involved to clear bacteria, toge-
ther with macrophages that exert early pro-inflamma-
tory and late anti-inflammatory functions during the 
healing process. The proliferation stage is characterized 
by the formation of new blood vessels, while fibroblasts 
deposit and remodel the extracellular matrix (ECM), and 
keratinocytes proliferate and migrate to close wounds. 
During the remodeling phase, cells in the granulation 
tissue undergo apoptosis, and macrophages break 
down excessive ECM and apoptotic cells. (4, 5)

Epigenetics refers to heritable changes in gene expres-
sion without altering the nucleotide sequence and in-
cludes three main mechanisms: DNA methylation, regu-
lation through non-coding RNAs (ncRNAs), and histone 
modification. (6) Epigenetic regulation is essential for the 
highly coordinated processes of wound healing. (7) Dysre-
gulation of epigenetic mechanisms caused by diabetes 
contributes to poor wound healing. Also, it is likely that 
epigenetic alterations are related with the adverse effects 
of diabetic complications that persist for a long time 
even after hyperglycemia is controlled to ideal levels, 
thus only long-term intensive glycemic control can miti-
gate the risk of developing diabetic complications. (8, 9)

This review highlights the epigenetic mechanisms in 
diabetic wound healing, particularly DNA methylation 
and regulation through non-coding RNAs (ncRNAs) re-
presented by microRNA (miRNA), long non-coding RNA 
(lncRNA), and circular RNA (circRNA), in pre-clinical and 
clinical studies, to valuable insights into the pathophy-
siology of DFUs.
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terations in HSCs, which in turn determined the gene ex-
pression of terminally differentiated inflammatory cells.
DNA methylation also affects neutrophil function. Neu-
trophils are important for wound healing as they release 
neutrophil extracellular traps (NETs) and subsequent 
death by NETosis, which is crucial for their antimicrobial 
function. This process is dysregulated in wounds of db/
db-/- mice contributing to delayed wound healing. (22) 
Furthermore, DNMT inhibition caused increased NETo-
sis. (23) Taken together, these findings suggest that DNA 
methylation may be an important epigenetic regulator 
in the inflammatory phase of wound healing via modu-
lation of neutrophils and macrophages functions.

> DNA METHYLATION IN ANGIOGENESIS

Angiogenesis is impaired in diabetic wound healing. 
DNMT1 plays a key role in angiogenesis, and several stu-
dies have shown that inhibition of DNMT1 expression is 
beneficial for angiogenesis. (24, 25)

Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) 
promote the formation of mature and functional micro-
vessels and maintain endothelial integrity, which is es-
sential for angiogenesis. (26) However, Ang-1 levels are 
decreased in wounds of diabetic mice. (27, 28) Transient 
hyperglycemia increases DNMT1 expression in endothe-
lial cells and in turn it leads to Ang-1 hypermethylation 
and decreased Ang-1 expression resulting in the persis-
tent activation of nuclear factor-κB (NF-κB) and subse-
quent endothelial dysfunction. (29) Furthermore, inhibi-

tion of DNMT1 promotes angiogenesis and wound 
healing via regulation of Ang-1/NF-κB signaling path-
way. (29) Moreover, nitric oxide (NO), important for 
wound healing, promotes the differentiation of mesen-
chymal stem cells to endothelial cells by inhibiting 
DNMT1 expression and consequently the methylation of 
the vascular endothelial growth factor (VEGF) receptor 1 
(Flt-1) promotor. (30) These results emphasize the long-
-term effects that hyperglycemia-induced DNA me-
thylation has on poor wound healing, suggesting that 
targeting DNMT1 has therapeutic potential in diabetic 
wound healing.

> DNA METHYLATION IN FIBROBLASTS AND 
KERATINOCYTES 

DNA methylation and demethylation occurs in fibro-
blasts and keratinocytes in diabetic wound healing. Fi-
broblasts from non-healing DFUs show lower global 
DNA methylation and functional annotation identified 
enrichment of genes associated with angiogenesis and 
extracellular matrix (ECM) assembly. (31)

In patients with diabetes, the matrix metalloproteina-
se-9 (MMP-9), a type IV collagenase important in cell 
migration and remodeling, is highly expressed in kerati-
nocytes at the wound site, leading to impaired epithe-
lialization and poor healing. (32) In human primary kera-
tinocytes, advanced glycosylation end products (AGEs) 
cause upregulation of TET2 gene expression, which lea-
ds to the increase in DNA demethylation in specific re-

Factor Target Methylation Condition Impact Ref.

DNMT1 - Methylation 
(increase)

Marrow-derived stem cells 
from diabetic mice

Pro-inflammatory macrophage 
phenotype (12, 19)

DNMT 3a and 3b COX-2 Methylation 
(decrease)

Wound macrophages of 
diet-induced obese and db/

db-/- mice

Increase in macrophage inflam-
matory cytokine expression and 

impaired phagocytosis of bacteria
(20)

- TLR2 promoter Methylation
(increase) DFUs Induction of innate immune and 

inflammation response (21)

DNMT NET components Methylation
(decrease) DFUs

Increase in spontaneous NETosis, 
but impaired inducible NETosis, 
consequently delaying healing

(22)

DNMT1 Ang-1 Methylation
(increase)

Human umbilical vein endo-
thelial cells cultured

in high glucose conditions

Persistent activation of NF-κB and 
subsequent endothelial dysfunc-

tion
(29)

DNMT1 Flt-1 promoter Methylation
(increase) Rat mesenchymal stem cells Differentiation of mesenchymal 

stem cells to endothelial cells (30)

TET2 MMP-9 promoter Methylation
(decrease) Human primary keratinocytes Increase in MMP-9 expression, 

leading to impaired healing (33,34)

Legend: Ang – angiopoietin; COX - ciclo-oxigenase-2; DFU – diabetic foot ulcer; DNMT - DNA methyltransferase; Flt - vascular endothelial growth factor (VEGF) receptor 1; 
MMP - matrix metalloproteinase; NET - neutrophil extracellular traps; NF-κB - nuclear factor-κB; TET - ten-eleven translocation; TLR - toll-like receptor.

Table I - The role of DNA methylation mechanisms in diabetic wound healing.
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gions of the MMP-9 promoter and increased the MMP-
9 levels. (33) Furthermore, under inflammatory conditions, 
keratinocytes showed site-specific DNA demethylation 
in the MMP-9 promoter, which was correlated with in-
creased MMP-9 expression. (34) Altogether, this suggests 
that targeting DNA demethylation could be a possible 
therapeutic approach in chronic wounds associated wi-
th increased levels of MMP-9. (35, 36)

> MECHANISMS OF NON-CODING RNAs IN 
DIABETIC WOUND HEALING MIRNA IN DIABETIC 
WOUND HEALING

MicroRNAs (miRNAs) are short, highly conserved non-
-coding RNA molecules (~22 bp) that regulate target 
gene expression at a post-transcriptional level. (37, 38) 
Most miRNAs bind to and interact with the 3′ UTR of 
target mRNAs resulting in target gene silencing, (39, 40) 
The regulation of miRNAs is important in all phases of 
wound healing. (41-43) Thus, we focus here on the roles of 
miRNAs in diabetic wound healing (Table 2).

> MiRNA IN INFLAMMATION

Inflammation is important to eliminate pathogens and 
remove dead tissue, but excessive or prolonged inflam-
mation can lead to poor wound healing. MiRNAs have 
become important players in wound healing by regula-
ting inflammatory signaling pathways and modulating 
the function of immune cells. (44) 
The inflammatory pathway COX-2/PGE2 was found in-
creased in wound-derived macrophages of human and 
mice with diabetes via inhibition of DNMT 3b–mediated 
hypermethylation of the Cox-2 promoter by the up-re-
gulation of miR-29b. (20) MiR-497 expression was redu-
ced in skin wounds of diabetic mice, and the intradermal 
injection of miR-497 accelerated wound healing by 
downregulating pro-inflammatory cytokines, such as 
interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha 
(TNF-α). (45) Moreover, miR-146a expression was decrea-
sed in wounds of diabetic mice along with upregulated 
pro-inflammatory cytokine expression, whilst the in-
crease in miR-146a expression promoted diabetic 
wound healing. (46) Moreover, the increase of miR-23b, 
with miR-23b mimic treatment, inhibited pro-inflam-
matory TNF-α, IL-1β, IL-6, and chemokine monocyte 
chemoattractant protein 2 (CCL2), and increased anti-
-inflammatory IL-10, decreasing the infiltration of in-
flammatory cells in the wounds of diabetic mice by tar-
geting apoptotic signal-regulating kinase 1 (ASK1). (47)

The miR-17-92 cluster is a polycistronic miRNA, which 

produces seven mature miRNAs: miR-17-3p, miR-17-5p, 
miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a. (48, 49) 
The miR-17-92 cluster was found upregulated during 
acute wound healing and downregulated in chronic 
DFUs. (50) The deletion of miR-17-92 cluster led to de-
layed wound closure in diabetic mice. 
MiR-132 was found suppressed in DFUs and diabetic db/
db-/- mice. (51) The treatment with miR-132 accelerated re-
-epithelialization of human ex vivo skin wounds, increa-
sed wound closure in mice and suppressed inflammation, 
in part through inhibition of the NF-κB signaling. (51)

Human wounds infected with Staphylococcus aureus, a 
common colonizer of DFU, triggered miR-15b-5p ex-
pression, where it suppresses DNA repair and the in-
flammatory response through downregulation of multi-
ple target genes including IKBKB, WEE1, FGF2, RAD50, 
MSH2 and KIT. (52) 
MiR-129-2-3p was found downregulated in bone mar-
row-derived neutrophils of db/db-/- diabetic mice. (53) 
Besides, miR-129-2-3p mimic treatment of wounds inhi-
bited the genes encoding for caspase 6 (Casp6) and re-
ceptor for monocyte chemoattractant protein-1 (Ccr2) 
to regulate the function of neutrophils and promote 
diabetic wound healing. (53) Moreover, miR-155 was in-
creased in diabetic mouse skin, which increased inflam-
matory cell infiltration and downregulated fibroblast 
growth factor 7 (FGF7), possibly leading to impaired 
proliferation and migration of keratinocytes or fibro-
blasts. In addition, miR-155 inhibition was found to pro-
mote wound healing in diabetic mice. (54)

Specific miRNAs may also represent good biomarkers 
for DFUs. Indeed, miR-191 and miR-200b upregulation 
was found in plasma samples from patients with diabe-
tes and chronic wounds. The increased circulating levels 
of miR-191 and miR-200b correlated with inflammatory 
markers and chronic wound size. (55) Furthermore, the 
expression of miR-21-5p, miR-155-5p, miR-146a-5p, and 
miR-221-3p were increased in plasma samples of pa-
tients with DFUs and concomitant psychological distress 
when compared to patients with DFUs but without 
psychological distress. This was further correlated with 
an increase in the immune cell ratio between effector 
CD4+ and CD8+ T cells and naive CD4+ and CD8+ T-cells, 
which is also associated with poor wound healing. (56) 
Yet, the plasma levels of  miR-146a-5p itself, from pa-
tients in the same cohort, suggested a good healing 
prognosis by decreasing inflammation. (57)

> MiRNA IN ANGIOGENESIS 

Hyperglycemia and endothelial dysfunction in diabetes 
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ncRNA Target Condition Impact Ref.

microRNA in diabetic wound healing

miR-29b DNMT 3b Wound-derived macrophages of human 
and mice with diabetes

Increases inflammation via increase of 
COX-2/PGE2 pathway (20)

miR-497 IL-1β, IL-6, TNF-α Wounds of diabetic mice Increases inflammation (45)

miR-146a Pro-inflammatory 
cytokine Wounds of diabetic mice Increases inflammation (46)

miR-23b ASK1 Wounds of diabetic mice Inhibits inflammation (47)

miR-17-92 cluster - DFUs;
Wounds of diabetic mice Delays wound closure (48-50)

miR-132 NF-κB signaling DFUs;
Human ex vivo skin wounds

Inhibits inflammation;
Accelerates re-epithelialization (51)

miR-15b-5p
IKBKB, WEE1, FGF2, 
RAD50, MSH2 and 
KIT

DFUs Suppresses DNA repair and the inflamma-
tory response (52)

miR-129-2-3p Casp6 and Ccr2 Bone marrow-derived neutrophils of 
diabetic mice

Regulates the function of neutrophils and 
promotes diabetic wound healing (53)

miR-155 FGF7 Skin of diabetic mouse Increases inflammatory cell infiltration (54)

miR-191, miR-200b - Plasma of patient with DFU Increases inflammation;
Inhibits angiogenesis (55)

miR-21-5p, miR-
155-5p, miR-146a-
5p, miR-221-3p

- Plasma of patients with DFUs
Increases the immune cell ratio CD4+ and 
CD8+ T-cells;
Associates with poor wound healing

(56)

MiR-21-5p VEGF Hindlimb ischemia rat diabetic foot 
model

Promotes diabetic foot ischemic repair 
and angiogenesis (63)

miR-23c SDF-1α Infected DFU Inhibits angiogenesis (64)

miR-26a SMAD1 Wounds of diabetic mice Inhibits angiogenesis (61)

miR-27b TSP-1, Sema6A, and 
p66shc

Bone marrow-derived angiogenic cells of 
diabetic mice Promotes angiogenesis (62)

miR-195-5p, miR-
205-5p VEGF-A Plasma samples from patients with DFUs;

Wounds of diabetic mice
Inhibits angiogenesis and migration of 
endothelial cells (64)

miR-21-5p, miR-
34a-5p, miR-145-
5p

- Fibroblasts isolated from DFUs Induces cell senescence, and impairs cell 
proliferation and migration (65)

miR-21-3p SPRY1 Fibroblasts cultured under high glucose;
Wounds of diabetic mice

Induces proliferation, collagen synthesis, 
and growth factor release (66)

miR-210 - Wounds of diabetic mice Increases proliferation and migration of 
keratinocytes (67,68)

miR-129, miR-335 SP1
Serum and tissue samples from patients 
with DFUs;
Diabetic rat model

Induces MMP9 expression and poor 
wound healing (69)

LncRNA in diabetic wound healing

GAS5 STAT1 Wounds of diabetic mice Induces macrophage polarization towards 
the M1-like phenotype (79)

Lethe NF-κB Macrophages under high glucose Increases ROS (80)

H19 PTEN Mesenchymal stem cells-derived exo-
somes Increase PI3K/AKT1 signaling pathway (81)

WAKMAR1 - Human ex vivo wound model Promotes migration of keratinocytes (83)

MALAT1 NFR2, HIF1, VEGF Infected DFUs;
Endothelial cells Downregulates angiogenic factors (85)

Table II - The role of non-coding RNAs in diabetic wound healing.

(continua)
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can lead to impaired angiogenesis, which increase the 
risk for diabetic foot ulcers development. In DFU, various 
miRNAs were found associated with vascular function, 
angiogenesis, and angiogenesis-related gene transcrip-
tion. (58) 
The antagomir of miR-15b and miR-200b, applied in in-
tradermally at the wound edge, increased the number 
of new blood vessels in wound of diabetic mice by upre-
gulating VEGF, Ang-1, and its receptor. (59) In patients wi-
th infected DFU, the miRNA-23c expression was increa-
sed and correlated with decreased stromal derived 
factor-1 alpha (SDF- 1α), indicating that miR-23c might 
inhibit angiogenesis in diabetic wounds by specifically 
regulating SDF-1α. (60)

MiR-26a expression was increased in wounds of db/db-/- 
mice. Local inhibition of miR-26a induced angiogenesis 
by increasing SMAD Family Member 1 (SMAD1) signa-
ling in endothelial cells, independently of altered M1/
M2 macrophage ratios. (61) MiR-27b expression was de-
creased in bone marrow-derived angiogenic cells 
(BMACs) from diabetic mice, and miR-27b mimic pro-
moted BMAC therapy on diabetic wound closure and 
rescued impaired BMAC angiogenic function by repres-
sing TSP-1, Sema6A, and p66shc genes. (62) 
The pro-angiogenic miR-21–5p promotes ischemic re-
pair in a hindlimb ischemia rat diabetic foot model and 
angiogenesis by upregulating VEGF receptor and acti-
vating serine/threonine kinase (protein kinase B, AKT) 
and mitogen-activated protein kinase (MAPK). (63)

Both miR-191 and miR-200b were upregulated in plas-
ma samples from patients with DFUs. Both miRNAs inhi-

bited angiogenesis and migration of endothelial cells 
overexpressing these miRNAs. (55) 
MiR-195–5p and miR-205–5p found in extracellular ve-
sicles isolated from DFU fluid, inhibited angiogenesis 
and decreased wound healing in patients with diabetic 
foot by directly inhibiting VEGF-A. (64)

> MiRNA IN FIBROBLASTS AND KERATINOCYTES

MiR-21-5p, miR-34a-5p and miR-145-5p were upregu-
lated in fibroblasts isolated from DFUs, and together wi-
th the suppression of their targets contributed to cell 
senescence in DFU fibroblasts and impaired cell prolife-
ration and migration. (65)

MiR-21-3p expression was suppressed in fibroblasts cul-
tured under high glucose, whereas the miR-21-3p ago-
nist regulated the reduction of the protein sprout ho-
molog 1 (SPRY1) promoting fibroblast proliferation, 
collagen synthesis, and growth factor release and acce-
lerating wound healing in diabetic mice. (66)

The decrease in miR-210 was associated with impaired 
proliferation and migration of keratinocytes which lead 
to poor wound healing in wounds of diabetic mice. (67) 
The local injection of miR-210 mimics increased granu-
lation tissue, cellular proliferation, and angiogenesis in 
wounds of diabetic mice by inhibiting the oxygen con-
sumption rate (OCR), enhancing glycolysis, and subse-
quently decreasing reactive oxygen species (ROS) levels 
restoring the metabolic balance. (68)

Downregulation of miR-129 and miR-335 was found in 
both serum and tissue samples from patients with DFUs. 

ncRNA Target Condition Impact Ref.

TETILA MMP9 Skin of diabetic patients Induces MMP-9 expression and impairs 
healing (86)

URIDS PLOD1 Skin of diabetic rat model Decreases collagen deposition and 
impairs healing (87)

CircRNA in diabetic wound healing

has_circ_0084443 PI3K, EGFR and ERK DFUs;
Human keratinocytes Decreases migration (93)

hsa_circ_0000907, 
hsa_circ_0057362 - Serum and serum-derived exosomes Early diagnosis of DFU (35,36)

Legend: AKT - protein kinase B; ASK - apoptotic signal-regulating kinase; Casp6 - caspase 6; Ccr2 - receptor for monocyte chemoattractant protein-1; COX - ciclo-oxige-
nase-2; DFU – diabetic foot ulcer; DMNT - DNA methyltransferase; EGFR - epidermal growth factor receptor; ERK - extracellular signal-regulated kinase; FGF – fibroblast 
growth factor; HIF - hypoxia-inducible factor; IKBKB - inhibitor of nuclear factor kappa B kinase subunit beta; IL – interleukin; KIT – tyrosine-protein kinase KIT; MALAT1 - 
metastasis-associated lung adenocarcinoma transcript 1; MMP - matrix metalloproteinase; MSH2 - MutS homolog 2; NFR2 - nuclear factor erythroid 2-like 2; NF-κB - nuclear 
factor-κB; p66shc - Src homologue and collagen homologue (Shc) adaptor protein; PGE - prostaglandin E; PI3K - phosphoinositide 3-kinase; PLOD1 - Procollagen-lysine, 
2-oxoglutarate 5-dioxygenase 1; PTEN - Phosphatase and Tensin Homolog; RAD50 – S. cerevisiae RAD50 homolog, gene encoding for protein involved in DNA double-
strand break repair; ROS – reactive oxygen species; SDF - stromal derived factor; Sema6A - Semaphorin 6A; SMAD1 - SMAD Family Member 1; SP1 - specificity protein-1; 
SPRY1 - protein sprout homolog 1; STAT - signal transducer and activator of transcription; TETILA - TET2-interacting lncRNA; TNF - tumor necrosis factor; TSP-1 - Thrombo-
spondin 1; VEGF - vascular endothelial growth factor; WAKMAR1 - wound and keratinocyte migration associated lncRNA 1; WEE1 – gene encoding for  tyrosine kinase Ser/
Thr family; URIDS - upregulated in diabetic skin.

(continuação)
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Specificity protein-1 (SP1) gene, upregulated in DFUs, is 
a direct target of both miRNAs. SP1 binds directly to the 
MMP-9 promoter and induces its expression. The indu-
ced overexpression of miR-129 and miR-335 accelerated 
wound closure and downregulated SP1 and MMP-9 ex-
pression in a diabetic rat model. (69)

> LncRNA IN DIABETIC WOUND HEALING

LncRNAs are defined as a type of ncRNA longer than 200 
nucleotides not translated into proteins. (70, 71) LncRNAs 
are regulators of several cellular processes, including nu-
clear chromatin organization, mRNA stability, transcrip-
tion, translation and cytoplasmic post-translational mo-
difications. (72, 73) LncRNAs have established roles in the 
pathology of many diseases, including cancer, cutaneous 
disorders and diabetes. (70, 74-78) The LncRNAs involved in 
diabetic wound healing are indicated in Table 2.
LncRNA GAS5 was overexpressed in wounds of diabetic 
mice, which promoted macrophage polarization towar-
ds the M1-like phenotype by increasing the signal trans-
ducer and activator of transcription 1 (STAT1). (79) Addi-
tionally, the knockdown of lncRNA GAS5 expression, 
with lentiviral short hairpin RNA, promoted the transi-
tion from M1- to M2-like macrophages to rescue impai-
red wound healing in db/db-/- mice. (79) Moreover, high 
glucose conditions decreased lncRNA Lethe in macro-
phages, resulting in increased reactive oxygen species 
production via NF-κB signaling. (80)

Fibroblasts from patients with DFUs presented decrea-
sed expression of LncRNA H19. (81) Likewise, mesenchy-
mal stem cells (MSC)-derived exosomes containing Ln-
cRNA H19 were shown to promote fibroblasts 
proliferation and migration, as well as decreased apop-
tosis and inflammation. LncRNA H19 was shown to bind 
to and suppress miR-152-3p, which in turn increased the 
level of its target gene Phosphatase and Tensin Homolog 
(PTEN) and therefore, the downstream activation of 
phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT1) 
signaling. Moreover, the induced overexpression of lncR-
NA H19 in DFU fibroblasts reduced miR-29b levels, resul-
ting in the upregulation of Fibrillin 1 (FBN1), enhancing 
the proliferation and migration of fibroblasts. (82) Thus, 
the delivery of lncRNA H19 could be used as an approa-
ch for improved fibroblast function under diabetic con-
ditions. (81)

The wound and keratinocyte migration associated lncR-
NA 1 (WAKMAR1) was found suppressed in DFUs. (83) Ln-
cRNA WAKMAR1 inhibited methylation of the E2F trans-
cription factor 1 (E2F1) promoter by sequestering DNMTs 
and promoted migration of keratinocytes and re-epi-

thelialization of human ex vivo wound model. (83) On the 
other hand, silencing of lncRNA WAKMAR2 inhibited 
inflammatory chemokine production of keratinocytes, 
decreased cell migration and impaired re-epithelializa-
tion in human ex vivo wounds. (84)

LncRNA metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1) was decreased in infected DFUs, (85) 
and this correlated with downregulation of nuclear fac-
tor erythroid 2-like 2 (NRF2), hypoxia-inducible factor 1 
(HIF1) and VEGF. Besides, the silencing of lncRNA MA-
LAT1 in endothelial cells reduced the expression of pro-
-angiogenic factors HIF1 and VEGF, as well as pro-inflam-
matory TNF-α and IL-6. (85) 
LncRNA TETILA (TET2-interacting lncRNA) was upregu-
lated in human diabetic skin. LncRNA TETILA recruits 
TET2, inducing the MMP-9 promoter demethylation, 
which lead to MMP-9 upregulation and impaired hea-
ling. (86)

LncRNA URIDS (upregulated in diabetic skin) was found 
highly expressed in the skin of diabetic rat model. Ac-
cordingly, silencing lncRNA URIDS at the wound site, 
with an adenovirus expressing lnc-URIDS shRNA, acce-
lerated in vivo wound closure. The lncRNA URIDS regu-
lated wound healing through interaction with Procolla-
gen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1), 
which results in decreased collagen deposition and de-
layed healing. (87) 
Understanding the role of lncRNAs in DFU is still in its 
genesis, thus emphasizing the need of further investiga-
tion to determine their potential for clinical application 
in the future.

> CIRCULAR RNAs IN DIABETIC WOUND HEALING 

CircRNAs are a class of non-coding RNA molecules that 
are structurally connected end to end to form single-
-chain molecules with a covalently closed loop structu-
re. (88, 89) Functionally, circRNAs can regulate the level of 
transcriptional and post-transcriptional parental genes 
by acting as miRNA sponges. (88) The circRNAs bind and 
sequester transcriptionally inhibitory miRNAs, introdu-
cing a new level of gene expression regulation. (90, 91) The 
circRNAs involved in diabetic wound healing are indica-
ted in Table 2.
CircRNAs have been reported to play a role in wound 
healing and a growing body of evidence implicate circR-
NAs in chronic wound healing. (92-96) The circRNA hsa_
circ_0084443 was found upregulated in DFU. The ove-
rexpression of hsa_circ_0084443 in human keratinocytes 
decreased migration, (93) most likely through the modu-
lation of PI3K, epidermal growth factor receptor (EGFR) 
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and extracellular signal-regulated kinase (ERK) signaling 
pathways as shown by transcriptomic analysis.
Due to their high stability, both circRNAs and miRNAs 
have been considered as potential biomarkers for va-
rious disorders, including non-healing ulcers. The hsa_
circ_0000907 and hsa_circ_0057362 were found in se-
rum and serum-derived exosomes were screened for 
the early diagnosis of DFU. (35, 36)

The role of circRNAs as regulators of the wound healing 
process in DFU is not clear, and more relevant studies are 
needed to clarify the relationship between them in the 
future. The identification and functional characteriza-
tion of circRNAs holds a potential for novel miRNA inhi-
bitory treatments for DFU associated with an abnormal 
miRNA expression.

> CONCLUSIONS 

Diabetes is becoming more and more prevalent in the 
world. Patients with diabetes suffer from numerous 
complications and DFU is one of the most common and 
serious. Indeed, DFU can lead to amputation, or even 
death, if it is not properly treated. This imposes a huge 
financial and health burden on patients with DFU worl-
dwide. Hence, there is an urgent need for the develop-
ment of therapeutics to improve the challenging treat-
ment of DFU. This work highlights the importance of 
epigenetic, particularly DNA methylation and deme-
thylation modifications, and regulation of non-coding 
RNAs, in wound healing under diabetic conditions, and 
provides valuable insights into the development of the-
rapeutics targeting diabetic wound healing.
In wound healing, epigenetic mechanisms play a key ro-
le as regulators of cellular responses through all phases 
of wound healing progression. Further characterization 
of these mechanisms in wounded skin at the different 
stages will allow a better understanding of the transition 
of acute wound into chronic non-healing wounds. The 
study of the changes in epigenetic mechanisms in pa-
tients affected with DFU will provide directions for iden-
tification of novel therapeutic targets.
Several questions are raised for the use of epigenetic 
mechanisms as therapeutic strategies for DFUs. The re-
gulation of DNA methylation and demethylation is va-
riable among different cells under diverse diabetic con-
ditions, making it challenging to ascertain how the 
variations in DNA methylation, the level of hyper- or 
hypomethylation and the specific sites, impact diabetic 
wound healing. Besides, caution should be taken to the 
use of non-coding RNAs as therapeutic targets for im-
paired wound healing as the pathology is very complex 

with the malfunction of multiple cells, often involving 
more than a single non-coding RNA.
Moreover, epigenetic mechanisms can also be conside-
red for potential application as markers for diagnosis 
and prognosis of wound healing disorders. Especially, 
the high stability and abundance of circRNAs and miR-
NAs contribute to its potential use as predictive and 
diagnostic biomarkers with the potential to reduce risks 
associated with chronic diabetic ulcers.
Therefore, further studies are needed to better unders-
tand the epigenetic targets of diabetic wound healing, 
to develop more effective therapeutic strategies for 
DFU treatments and to identify novel diagnostic and 
therapeutic targets. <
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